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SUMMARY

During the course of this work, we have developed a new numerical
method for the integration of the unaveraged, time-dependent, high-Reynolds
number Navier-Stokes equations governing a reacting flow. This method,
which we called the transport element, is a grid-free, Lagrangian field
method which as been developed for the simulation of reacting flow, and to
describe mechanisms of shear flow-combustion interaction which have been
revealed using these methods.

Accession For /

NTIS GRA&I 1 -
DTIC TAB 13
tammnounced 0
Justificat1o

By

Dist ribut ion/
Availability Codes

Aval hand/or
Dist Speoial

Al



TABLE OF CONTENTS

PERSONNEL 2

PUBLICATIONS DURING 1988-1989 3

INTERACTIONS DURING 1988-1989 5

TECHNICAL REPORT 1984-1989 6

I. BACKGROUND 6
I.1. NUMERICAL ISSUES 6
1.2. CLASSIFICATION 7
1.3. ORGANIZATION 8

II. THE VORTEX ELEMENT METHOD IN 2D 11
II.1. NUMERICAL SCHEME 11
11.2. PRIMARY SHEAR FLOW INSTABILITY 13

III. THE VORTEX ELEMENT METHOD IN 3D 15
III.. NUMERICAL SCHEME 16
111.2. VORTEX RINGS 17
111.3. SECONDARY INSTABILITIES IN SHEAR FLOWS 19

IV. THE TRANSPORT ELEMENT METHOD 22
IV.1. NUMERICAL SCHEME 23
IV.2. SCALAR MIXING IN SHEAR LAYERS 25
IV.3. ENTRAINMENT ENHANCEMENT DUE TO 3D 26

V. VORTEX METHOD FOR VARIABLE DENSITY 27
V.1. BAROCLINIC EFFECTS 28

VI. VORTEX METHODS FOR REACTING FLOW 30
VI .1 THE REACTING SHEAR LAYER 32
Vi.2 3D REACTING SHEAR LAYERS 34
VI.3 THE REACTING JET 36
VI.4. THE PREMIXED SHEAR LAYER 40

VII. EXTENSIONS 42

VIII. CLOSURE 43

REFERENCES 46

FIGURE CAPTIONS 50



2

PERSONNEL

Five graduate students completed their degrees during 1984-1989 under

partial support of this program. Their names and theses title are:

1. Gagnon, Yves, Numerical Investigation of Recirculating Flow at Moderate
Reynolds Numbers Using Vortex Methods, M.Sc. Thesis, February 1986.

2. Ng, K.K., Vortex Simulation of a Confined and Perturbed Mixing Layer,
M.Sc. thesis, February 1986.

3. Heidarinejad, Ghassem, Numerical Simulation of a Reacting Shear Layer
Using The Transport Element Method, Ph.D. thesis, February 1989.

4. Najm, Habib, Numerical Investigation of the Instability of Premixed
Dump Combustors, Ph.D. thesis, June 1989.

5. Krishnan, Anantha, Numerical Study of Vorticity-Combustion Interactions
in Shear Flow, Sc.D. thesis, August 1989.

Three graduate students are currently working on their theses under

partial support from this contract. Their names and theses titles are:

1. Knio, Omar, Spanwise Structures in a Reacting Turbulent Mixing Layer:
Solutions Using 3-D Vortex Methods, Ph.D. thesis, expected June 1990.

2. Loprenzo, T., Implementation of Reduced Chemical Kinetics Schemes in
Vortex Simulation of Shear Flow, M.S 'hesis, started September 1989.

3. Soteriou, Marios, Compressible Vc x Method for the simulation of high
Mach Number Combustion, Ph.D. thesis, started September 1988.



3

PUBLICATIONS DURING 1988-1989:

1. Ghoniem, A.F., Heidarinejad, G. and Krishnan, A. "Numerical simulation
of A Thermally-stratified Shear Layer Using the Vortex Element Method ," J.
Comput. Phys., 79, 1988, pp. 135-166.(*)

2. Krishnan, A. and Ghoniem, A.F. "Origin and Manifestation of Flow-
Combustion Interaction in A Premixed Shear Layer," Proceedings of the 22nd
SXmposium (International) on Combustion, the Combustion Institute,
Pittsburgh, PA, pp. 665-675.(*)

3. Knio, O.M. and Ghoniem, A.F. "Numerical Study of A Three-dimensional
vortex method," J. Comput. Phys., in press, 1989.

4. Heidarinejad, G. and Ghoniem, A.F., "Vortex Simulation of the Reacting
Shear Layer; Investigation of the Limits on the Rate of Burning," 27th AIAA
Aerospace Sciences Meetin , Reno, Nevada, January 9-12, 1989,AIAA--
0573.(*)

5. Ghoniem, A.F. and Krishnan, A, "Baroclinic Effects in Density-
stratified Flows," submitted for publication, J. Fluid Mech, June 1989.

6. Ghoniem, A.F. and Krishnan, A. "Mixing Patterns and the Generation of
Vorticity in Density Stratified Flow," presented at the International
Workshop on The Physics of Compressible Turbulent Mixing, Princeton
University, Princeton, N.J., October 24-27, 1988, in print.

7. Krishnan, A. and Ghoniem, A.F., "Numerical Simulation of the Structure
of A Momentum/Gravity Driven Diffusion Flame," 27th AIAA Aerospace Sciences
Meeting, Reno, Nevada, January 9-12, 1989, AIAA-89-0485.(*)

8. Ghoniem, A.F., Vortex Methods in Turbulent Reacting Flow, in Numerical
Approaches to Combustion Modeling, ed by E. S. Oran and J. P. Boris, to be
published by the AIA, 1989.

9. Knio, O.M. and Ghoniem, A.F. "Three-dimensional Simulation of the
Entrainment Augmentation Due to Streamwise Vortex Structures," 2
Aerospace Sciences Meetiny, Reno, Nevada, January 9-12, 1989, AIAA-89-0574.

10. Knio, O.M., and Ghoniem, A.F., "Three Dimensional Vortex Simulation of
Roll-up and Mixing in Shear Flow," submitted for publication at the Journal
of Computational Physics, June 1989.

11. Krishnan, A. and Ghoniem, A.F., "Simulation of the rollup and mixing in
Rayleigh-Taylor flow using the vortex/transport element method," submitted
for publication at the Journal of Computational Physics, August 1989.

12. Ghoniem, A.F. and Krishnan, A. "Vorticity-combustion interactions in a
turbulent reacting jet," presented at The 12th International Colloquium on
Dynamics of Explosions and Reactive Systems, July 23-28, 1989, Ann Arbor,
Michigan, Proceedings in print.

13. Najm, H. and Ghoniem, A.F., "Flame-Vorticity-Acoustic Interactions
Leading to Combustor Instability," the AIAA/SAE/ASME/ASEE 25th Joint
Propulsion Meeting, Monterey, CA, July 10-12, 1989.(*)



4

14. Ghoniem, A.F. and Heidarinejad, G., "The structure of the reaction zone
in a reacting shear layer;" presented at The 12th International Colloquium
on .Dnamics of Exelosions and Reactive Systems, July 23-28, 1989, Ann Arbor,
Michigan, Proceedings in print.

15. Ghoniem, A.F., "Numerical Simulation of Turbulent Combustion using
Vortex Methods," Invited five-lecture series at the University of Rome,
Italy, June 24-28, 1989.

The P.I. delivered a number of invited seminars and presentations. A
partial list is presented below:

1. Sandia Meeting on Turbulent Reacting Flow, General Electric Co.,
Schenectady, October 1988.

2. DOD and EPA Tyndall Conference on Halon, the Ozone Layer and Research
on Alternative Chemicals, Tyndall, Florida, November 1988.

3. University of Connecticut, Storr, November 1988.

4. University of California, Berkeley, April 1989.

5. Yale University, April 1989

6. Engineering Foundation Conference on Fluid Mechanics of Engine
Combustion, Santa Barbara, May 1989

7. Gas Research Institute Meeting on Fluid Mechanics of Gas Burners, May
1989.

8. Berkeley Workshop on Vortex Methods, May 1989.

(*) Reprints are included with the report.



INTERACTIONS WITH INDUSTRIAL AND GOVERNMENT LABORATORIES DURING 1988-1989:

During the course of last year, we have started and/or continued

collaborative working relations with the following industrial or governmental

laboratories:

1. Wright-Patterson Laboratory; with Dr. M. Roquemore on the modeling of the
jet diffusion flame.

2. General Electric Research Center; with Dr. Sanjay Corea on the study of
turbulent premixed flames and their instability.

3. Sandia National Laboratory; with Drs. R. Lucht and John Kelly and their
associates on the study of bluff-body diffusion flames.

4. Gas Research Institute; with Dr. J. Kezerle, on the numerical simulation of
bluff body flame burners.

5. Ford Motor Company; with Mr. C. Kent and L. Ramai, on numerical simulation
of flame propagation in enclosures and flow during intake processes.

6. Shell Oil Co.; with Dr. J.-C. Ginestra, on numerical simulation of flow,
mixing and combustion in well-stirred reactors.

7. Allison Gas Turbine; with Dr. H. Mongia, on numerical simulation of
streamwibe vortex structures in thrust augmentor sections.

8. National Institute of Standards and Technology; with Dr. H. Baum, on
numerical simulation of uncontrolled combustion.

9. Army Atmospheric Research Laboratory; with Mr. R. Meyers, numerical
simulations of flow over complex terrains.



6

TECHNICAL REPORT

VORTEX SIMULATION OF REACTING SHEAR FLOW

I. BACKGROUND.

Consider the class of unsteady, high-Reynolds number, reacting-shear

flows, including shear layers, jets, wakes and recirculating flows. These

flows are characterized by a rapid growth of successive natural

instabilities which lead to substantial changes in the geometry of the

streamlines. The simulation of these flows, i.e., the solution of the

unsteady, unaveraged governing equations, requires computational schemes

which accommodate these geometrical changes, and in which numerical

diffusion is maintained below physical diffusion without sacrificing

numerical stability. One way to achieve this is to utilize schemes based on

the Lagrangian formulation of the conservation equations.

In Lagrangian methods, grid points, where the flow variables are

computed, are transported along particle trajectories. These methods offer

natural ways to: (1) accommodate the severe distortion experienced by high-

Reynolds number flows as they evolve through different states; (2) reduce

the artificial diffusion encountered in numerical schemes in which spatial

derivatives are discretized; and (3) account, in a balanced way, for

physical diffusion in regions where the two modes of transport; convection

and diffusion, are of the same order of magnitude. A brief discussion of

these issues is presented.

I.l. NUMERICAL ISSUES

A challenge which is often encountered in numerical simulation of

reacting shear flow is how to capture the severe distortion of the flow map

which results from the nonlinear growth of natural flow instabilities. The

saturation of these instabilities in the primary flow, which can normally be
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characterized by almost parallel streamlines, results in a secondary flow

with strongly curved streamlines. The later often possesses secondary

instabilities which evolve into tertiary flows. To accurately capture these

changes using a numerical simulation, a very large number of fixed grid

points, or a moving grid in which mesh points follow the distortion of the

flow field is needed. The latter class belongs to Lagrangian schemes.

Convection is the dominant mechanism of transport at high Reynolds

number. Convection in the cross-stream direction, perpendicular to the

streamwise direction, is increased substantially by the growth of natural

flow instabilities and their saturation into fully-developed flows.

Meanwhile, diffusive transport cannot be ignored. Molecular diffusion is

responsible for the transport of vorticity from solid walls into the

interior in boundary layers, the mixing of species across material surfaces,

and the transport of heat and species across laminar flames. Accurate

simulation of diffusion is particularly crucial in reacting flows where

mixing, most often, determines the burning rate. On the other hand,

excessive numerical diffusion in an algorithm can artificially stabilize the

flow. Numerical diffusion acts as a fictitious source of molecular

diffusivity that reduces the effective Reynolds number of the computed flow.

In combustion calculations, excessive mixing due to numerical diffusion

tends to increase the burning rate. To capture the growth of flow

instabilities while limiting diffusion to practically interesting values one

needs to simulate flows at Reynolds number 0(103-105).

1.2. CLASSIFICATION

One class of Lagrangian methods, which has successfully been used in

gas dynamics, utilizes grids to discretize flow derivatives., e.g.,

Lagrangian finite-difference methods. In this method, grid points are
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transported along particle trajectories. Shear flow can lead to strong

dictortion of the grid and a concomitant loss of discretization accuracy.

To maintain accuracy a long time after the action of strong shear, mesh

regularization and remeshing become important [1-3].

On the other hand, grid-free, Lagrangian field methods, of the type

described in this report, do not use approximations to spatial derivatives

on a nonuniform mesh. Instead, computational elements are used to transport

finite values of the spatial gradients of the variables, specifically

vorticity and scalar gradients (scalars are temperature and species

concentrations). Primitive variables, such as velocity and scalar

concentrations, are obtained by integration over the strength of the

transport elements. These method are labelled field methods since each

element induces a field of both its strength, e.g., the vorticity of an

element extends over a finite area, and of the primitive variable it is

transporting, e.g., the velocity induced by a vortex element extends to an

infinitely large distance.

The goals of this report are to review Lagrangian field methods which

have been developed for the simulation of compressible reacting flow, and to

describe the mechanisms of shear flow-combustion interaction which have been

revealed using these methods. These goals are achieved simultan-ously by

progressively introducing more complicated models, describing the necessary

numerical algorithms and presenting their results in a form most relevant to

the study of flow-combustion interaction. The models are gradually expanded

until they include many of the physically interesting processes in

combustion.

1.3. ORGANIZATION
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Vortex methods, a particular class of grid-free Lagrangian field

methods, have been used to obtain solutions of the momentum equation. These

methods are based on the discretization of the vorticity among elements of

finite area, and the transport of these elements along particle

trajectories. The fact that vorticity is conserved along the particle

trajectory in a two-dimensional, uniform-density flow makes these methods

particularly simple. However, in Section II, we show that maintaining

accuracy requires the application of elaborate vorticity-updating schemes as

vortex elements are moved along particle trajectories when shear, or a

strong strain field is present. The extension and application of vortex

methods to three dimensional flows, where the conservation of vorticity

along particle trajectories is not satisfied, also require the careful

application of schemes to implement the effect of vortex stretch on the

strength of the elements, as discussed in Section III. Solutions using the

two and three-dimensional methods are discussed to illustrate some of the

most common instabilities encountered in nonreacting and reacting shear

flows and to reveal the mechanisms by which the maturation of these

instabilities enhance mixing, and hence burning in a reacting flow.

The application of vortex methods to nonuniform density, reacting and

compressible flows requires compatible Lagrangian, grid-free field schemes

to compute the transport of scalars. For this purpose, we developed the

transport element method to solve the convective-diffusive scalar transport

equation. Even in a nonuniform density, incompressible flow, the transport

of a scalar is required for the computations of the density field which

affects the flow dynamically via the generation of baroclinic <orticitv.

The formulation of this method is described in Section IV, and the results

of its application to compute scalar mixing in a shear layer are reviewed.
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The transport element method is then combined with the vortex method to

solve the problem of nonuniform density shear flow in Section V. Baroclinic

vorticity generation is one of the important mechanisms by which combustion

affects the fluid dynamics and, thus, the computational results on a

nonuniform-density shear layer are reviewed in some detail in this section.

Another important mechanism of flow-combustion interaction, namely

reaction extinction due to the formation of localized regions of strong

strains as instabilities grow into their nonlinear range, is revealed by the

results of incompressible reacting flow models. These results are discussed

in section VI, after reviewing the formulation of the low-Mach number

combustion model and the extension of the transport element method to

accommodate the reaction terms in the conservation equations. Three-

dimensional reacting shear layer simulations are presented to illustrate the

complexity of the mixing pattern encountered in these flow and how they

affect the structure of the burning zone. Compressible reacting flows

exhibit another mechanism of combustion-flow interaction, namely the

volumetric expansion associated with energy release within the reaction

zone. Results of computations of combustion in heterogeneous and homogenous

compressible shear layers, using the transport element method, are reviewed

to illustrate the origin and role of this mechanism.

The bulk of this report is devoted to a brief description of Lagrangian

methods for the simulation of reacting flows in free shear layers, and a

review of the most important mechanisms of flow-combustion interactions

revealed by the application of these methods. Section VII briefly describes

some extension of vortex methods to confined shear flow. We close the

report with some thoughts on the needs for future development in the

methodology and some areas of application which have not been explored.
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II. THE VORTEX ELEMENT METHOD IN TWO DIMENSIONS.

The vorticity transport equation of a two-dimensi .al, incompressible,

inviscid flow is:

a w + u V 0 , (1 )
at

where Vxu = and V-u - 0. In the above, u - (u,v) is the velocity, w is

the vorticity, x - (x,y), t is time and V - (a/ax,a/ay). If X(X,t)

describes a particle path, where X is the Lagrangian coordinate of )( so that

X(X,0) - X, then Eq. (1) states that w(X(X,t),t) - w(X,0),i.e., vorticity is

constant along particle trajectory. Thus, if the vorticity field at time t

- 0 is divided among elements which move along particle trajectories, the

strength, i.e., the vorticity of each element will remain the same.

Moreover, it can be shown that u(x,t) = f K(x-x') w(x') dx', K(x) - - 1/2r 2

(-y,x) and r2- x2+y2 , which is the Biot-Savart law. This Lagrangian

formulation of vorticity transport is the basis of vortex methods [4,51.

II.1. NUMERICAL SCHEME

In vortex methods, the vorticity field is discretized into a number of

vortex elements of finite and overlapping cores:

N
W(xt) = E Wi h2 f 6(x-i(Xi't ))'  (2)

i-l

where wi is the vorticity of an element, N is the total number of vortex

elements, h is the average distance between the centers of neighboring

elements in two principal directions, h2= hxhy, 6 is the core radius of a

vortex element, and f6 - 1/62 f(r/6) is the core function describinq the

distribution of vorticity associated with an element.
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The velocity field of a distribution of vortex elements is obtained by

substituting Eq. (2) into the Biot-Savart law and performing the

integration. The result is:

N
u(x,t) - K h2 K (x-xi(Xi't))' (3)

i=1

where

dxi . u(Xi(Xit),t), (4)

while KS(x) - K(x) K(r/6) and K(r) - 2n 0fr f(r') r' dr'.

Equation (2) is equivalent to expanding a function w(x,t) in terms of a

number, N, of kernel functions, f,, located at Xi and with weights wi
h

The accuracy of the discretization depends on the choice of f, the initial

distribution of the particles, the evaluation of the values of wi, i - 1, 2,

N, and the ratio of 6/h [6,7]. The selection of a core function to

achieve given accuracy was extensively discussed in a number of theoretical

analyses [8-11]. For the evaluation of the initial values of wi, we found

that collocation on a uniform grid provides the best long time accuracy

(collocation on a nonuniform grid may be a better choice when the initial

vorticity field is highly nonuniform). We also found, using extensive

numerical experimentation, that accurate discretization and long-time

accuracy of the computed flow field require that & = 1.1-1.5 h. This choice

of S/h allows for strong overlap between the fields of the vortex elements.

Thus, the local value of vorticity is determined by the contributions of

many surrounding elements.

A strong strain, associated with the growth of perturbations into the

nonlinear stages of the underlying instability, increases the distance

between neighboring elements, SX, beyond the desired maximum value of h.

Thus, the accuracy of the spatial discretization, which is governed by 6/h,
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is negatively affected and unorganized, random motion on the scale of h is

encountered. This deterioration of accuracy is connected with the failure

of vortex elements of fixed cores to accurately capture the distortion of

the vorticity field locally. To circumvent this problem, more elements are

introduced in areas where 6x > Oh, where 0 - 1.5. The circulation of the

original elements is locally redistributed among the newly introduced

elements, and the local value of vorticity is kept constant.

In the redistribution algorithm, conservation of vorticity is satisfied

by dividing h2 and &2 such that 6/h remains constant, i.e. the core radius

of an element is decreased as the element is exposed to strong positive

strain. An alternative way to capture the effect of strain on the geometry

of the computational elements is to replace a circular elements by an

elliptical element, while preserving its area, with its major axis aligned

with the direction of maximum positive strain. If this was done, a circular

vortex element would eventually become a vortex sheet with a velocity jump

across its length equal to the local value of the vorticity wi. For

computational convenience, however, we replace a strained circular element

by several circular elements, aligned along the major axis of strain, but

with smaller core radii than the original element [6].

11.2. PRIMARY SHEAR FLOW INSTABILITIES

We used shear layers as test cases for the validation of the numerical

methods, and as generic problems for the study of flow-combustion

interactions. We start with a two-dimensional, incompressible, nonreacting

flow, and build up to three-dimensional flow, variable density flow, and

compressible reacting flow.

The growth of a sinusoidal perturbation on an infinite shear layer is

shown in figure la in terms of all the vortex elements used in the
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simulation and their velocity vector. Figure la illustrates the adaptivity

of the scheme; more elements are introduced to capture the straining layers.

The growth of small perturbations in a spatially developing shear layer in

which the flow was assumed to be semi-infinite is depicted figure 2 in terms

of the vortex element distribution. In both the temporal and spatial shear

layers, numerical results for the growth rate of small perturbations as a

function of the perturbation wavelength were found to agree with the results

of the linear stability theory. The nonlinear regime of these Kelvin-

Helmholtz instabilities is characterized by the formation of large-scale

structures due to the roll-up of the vorticity layer, as shown in figures 1

and 2. Results in this regime are checked for convergence and against

experimental data. Convergence is tested by establishing the grid

independence of the solution, and whether the solution satisfies certain

differential and integral constraints, such as the conservation of vorticity

along a particle path, dw/dt - 0.

Figures 1 and 2 show that beyond the linear range of the instability,

where the growth is exponential, the mean growth rate of the shear layer

reaches a constant value, in agreement with experimental data. Within this

range, the computed results were used to evaluate the flow statistics.

Figure 3 shows the close agreement obtained between the computed results and

the experimental measurements. We note that mean velocity profiles reach

self-similarity earlier than mean fluctuations. The the response of the

layer to time-dependent boundary conditions was analyzed by modulating the

inlet flow at frequencies different from the natural shedding frequency.

Samples of the results, in which the flow is forced at the fundamental

alone, and at the fundamental and the subharmonic at the same time, are

shown in Figures 2b and 2c, respectively. The shear layer growth, and the
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accompanying rate of mixing, is enhanced by inducing an earlier shedding,

and pairing in the second case, through the application of external forcing

[7]. Multiple pairing can be achieved by lower frequency forcing, as

discussed in [13].

In a two-dimensional flow, the source of fluctuation is the formation,

growth, and pairing of the large-scale vortex structures due to the natural

flow instability. Two instabilities are observed in figure 2, the roll-up

instability which leads to the formation of large eddies, and the [airing

instability which is responsible for the amalgamation of these eddies

downstream. We call these the primary instabilities since they grow in the

primary, streamwise direction. Forcing, which can be used to either promote

or suppress these instabilities, was shown to have a direct impact on the

values and signs of these fluctuations, suggesting that by employing

carefully designed forcing functions, one can control the interactions

between the mean flow and the shear-layer flow [13]. Computations of the

initial stages of a two-dimensional turbulent jet were presented in [14].

III. THE VORTEX ELEMENT METHOD IN THREE DIMENSIONS

The vorticity transport equation in an incompressible, three-

dimensional, inviscid flow is:

aw + u • o - Vu (5)at

where w - Vxu, and V - (8/3x,a/ay,3/az). In this case, u - (u,v,w) and x -

(x,y,z). The Lagrangian form of Eq. (5) is dw(X(X,t),t)/dt =

(a(X(X,t),t).Vu, where Vu is the strain tensor 3ui/ax.. An equivalent

expression which can be used to determine the vorticity directly is the

Helmholtz theorem: w(X(X,t),t) . VX(X,t).w(X,0), where VX is the Jacobian of

the flow map, 8Xi/aX X. Moreover, it can be shown that u(x,t) = S K(x-x') x
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cx') dx', where K(x) - -1/4n x/r3, which is the Biot-Savart law in three

dimensions. This Lagrangian formulation is the basis for the construction

of three-dimensional vortex methods [15,161.

III.1. NUMERICAL SCHEME

Vorticity is discretized among volume elements, of side h, initially

centered around Xi, by collocation. The vortex elements are then moved

along particle trajectories, Xi(Xit), while their vorticity is changed

according to the right-hand side of Eq. (5). Thus,

NW(x, t) - Z (ai( t) h' f 6(X-XiXi,t)), (6)

i=

where in this case, fW(x) - 1/63 f(r/8) and the rest of the parameters are

defined as before. Note that, here, one defines strongly overlapping vortex

balls of diameter 6, and that the core function is spherically symmetric,

while the vorticity vector associated with an element is wi

The total vorticity vector of an element, Wih , is expressed more

naturally in terms of r i and 61 i where ri= wih 2 is the circulation of the

element, which remains constant along a particle path in an inviscid flow

(Kelvin's theorem), and 61i is the length of the material element along the

vortex line, 61i- hi 6/wi, that changes as the material lines stretch

(Helmholtz theorem). The formulation in terms of (81, r) offers a natural

regridding method which is used when 61 > Oh due to stretch. In this case,

a vortex element is divided into two elements along the vector 61, while

preserving the value of r. The conditions necessary for the accurate

discretization of the initial vorticity in two dimensions are valid in three

dimensions, e.g., 8 > h. This condition must be satisfied at all time.
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The velocity field induced by the discrete vorticity distribution is

obtained by substituting Eq. (6) into the Biot-Savart law and integrating.

The results can be written as

N
u(x,t) = r ri 61i(t) K - Xi(X,t)),  (7)

and

dXi = u(Xi(Xit),t), (8)

1i(t) = 1 (Xi+l(Xi+lt) - Xil(Xi-lt)). (9)

where K6(x) - K(x) K(r/6) and K(r) - 4n r f(r') r'2 dr'. To reduce the

computations, we utilize the fact that vortex lines are also material lines

in an inviscid flow. Application of Eq. (9) requires maintaining data on

the immediate neighbors in the direction of vorticity. Thus, one-

dimensional Lagrangian grids are employed to describe individual vortex

lines as arrays of vortex elements arranged along the vortex line. The

condition that a vorticity field in a three-dimensional free space be

solenoidal, V.w - 0, is implicitly satisfied in Eq. (9). Equations (7)-(9)

describe the vortex filament method (17].

111.2. PROPAGATION AND INSTABILITY OF VORTEX RINGS

Before describing their properties, we mention that vortex rings, in

addition to providing a test problem for the numerical scheme, play an

important role in combustion theory and practice. We refer the reader to

the experimental literature for studies on flame-vortex-ring interactions

[18] and the large-scale structure of jet diffusion flames [19].

It has been shown analytically that the self-induced velocity of a thin

vortex ring, a << R, where a is the core radius and R is the ring radius, is
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a function of a/R and the vorticity distribution within the core, Q(r/a)

[20]. Numerically, using 6 - a, the dependence of the self-induced velocity

on a/R was aci-urately computed when overlap was maintained between

neighboring vortex elements along the ring axis [211. The long-wave

azimuthal instability of a thin vortex ring, with a wavelength X >> a, was

observed when the ring was perturbed along its axis with a number of waves n
* *

- 2nR/X. The computed unstable wavenumber, k - 2n/n , and growth rate of

these waves within the linear range agreed with the prediction of the

corresponding linear theory (221. The growing standing waves at k

contrary to the spinning stable waves at all other wavenumbers, expend the

flow energy in stretching the waves in the direction opposite to the ring

self-induced velocity.

In the nonlinear range, the growing waves form almost closed loops of

vorticity behind the original ring, as shown in figure 4. These loops are

connected to the original ring via very narrow necks that can be pinched off

by the action of viscosity. Each loop is formed of two vortex rings of

opposite signs of vorticity separated by a very small distance. The

separation of these loops from the parent ring may lead to the formation of

off-spring vortex rings with a smaller diameter than that of the original

ring. This would result in an interesting cascading to smaller scales; a

faster decay of the original ring; and the reduction of the circulation of

the parent ring [23].

The study was extended to investigate the growth of short-wave

instabilities, X - a, within the core of the ring. In this case, one must

allow the core of the ring to deform under the action of the qro>inq

perturbation. Analysis of variations within the core requires adequate

resolution of its vorticity field by utilizing vortex elements with a core
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radius 6 < a, i.e., several elements must be used to accurately describe the

vorticity field within the core. The computed value k , shown in figure is

in close agreement with the prediction of the linear theory for short-

wavelength instability in deformable vortex rings. The value of k* depends

on the vorticity distribution within the ring core, Q(r/a). figure 5 shows

that the value of k , predicted from the short-wave analysis, is closer to

the experimental data than that predicted by the previous long-wavelength.

Spectral analysis of the field of an unstable ring shows that as the

fundamental instability reaches saturation, its harmonic becomes unstable

and starts to grow. The mechanism of excitation of this frequency,

displayed in figure 6, is associated with the formation of hairpin vortices

at half the wavelength of the original perturbation. Examining the

vorticity field after the saturation of the first instability reveals the

presence of a strong streamwise vorticity component with alternating signs

as one moves along the axis of the original ring (24]. This component is

the result of the tilting of the original vortex lines into the streamwise

direction. The tilting occurs as the azimuthal instability grows. Within

each azimuthal wave, two vortices of opposite signs are formed.

The scheme was also used to study the three-dimensional instability of

the initial stages of an axisymetric jet (17]. It was found that the jet

rolls up into vortex rings which experience a similar instability to that of

an isolated vortex ring.

111.3. SECONDARY INSTABILITIES OF SHEAR FLOW.

Beyond the primary instability, shear flows develop secondary

instabilities which leads to the generation of streamwise vorticity !the

vorticity vector points in the streamwise direction), an important mechanism

of mixing enhancement (24-26]. To simulate this process, the shear layer is
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initially perturbed in the streamwise and spanwise directions, and the

vortex scheme is modified to accommodate the strong strain field which

develops in the plane normal to the initial vorticity. This is accomplished

by redistributing the vorticity field among a larger number of elements

arranged in the direction of maximum strain.

In the transport element scheme, each vortex element is defined by its

circulation and two material vectors: one in the direction of vorticity and

the other in the direction of maximum strain. This is equivalent to using

two-dimensional Lagrangian grids to describe planes of constant circulation.

The stretch of the sides of the grid can be used to update the vorticity

associated with each element in the plane. Alternatively, a grid-free

stretching scheme can be constructed on the basis of Eq. (5). In this

scheme, the term a.Vu is computed for each element by analytically

differentiating the velocity expression in Eq. (7). The computational

effort is almost the same in both schemes, however the bookkeeping in the

first scheme is greater (261.

The evolution of a temporal shear layer is displayed in the next three

figures. Figure 7 depicts the distortion of the material surface initially

aligned along the midsection of the layer, where u - 0, in terms of the two-

dimensional grid used to discretize its vorticity (this is one of several

such surfaces used to discretize the vorticity). Figure 8 shows the

distribution of the streamwise vorticity contours on a y-z streamwise plane

(a streamwise plane is normal to the streamwise direction) which cuts

through the core of the spanwise structure at the middle of the domain.

Figure 9 depicts the streamwise vorticity on a y-z plane which cuts throuoh

the braids of the spanwise structures (the principal axis of this structure

coincides with the spanwise direction). The distribution of the streamwise
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vorticity indicates that during the growth of the streamwise perturbation,

the growth of the spanwise perturbation is suppressed, and the flow remains

almost two-dimensional. The growth of the streamwise instability (not

shown) matches that of a two-dimensional flow until the time the streamwise

instability saturates, t - 8. The saturation is accompanied by the

formation of a spanwise, c, ir rally shaped vortex core whose axis is

perpendicular to the mean flow direction. The formation of this core is

accompanied by a secondary flow whose streamlines are almost circular.

Beyond the saturation of the streamwise instability, t > 8, the growth

rate of the spanwise instability increases and the vortex core starts to

deform. This deformation, and the concomitant tilting of the vorticity

vectors from the spanwise direction into the streamwise direction, leads to

the establishment of a streamwise vorticity component with an alternating

sign along the axis of the spanwise cylindrical structures. The deformation

of the spanwise cylindrical cores is known as the translative instability.

The streamwise vorticity associated with this instability is shown in figure

8. The fact that the cores are covered from both sides by two rows of

streamwise vortex rods is explained next.

The other source of streamwise vorticity is the deformation of the

vortex lines of the braids in the cross-stream direction, as shown in figure

7. The vorticity component in the cross-stream direction is transformed

into a streamwise component by the action of the velocity gradient, au/3z,

where u is the velocity component in the x-direction. Along the spanwise

direction, streamwise vorticity changes its sign every half wavelength.

This configuration is unstable, and each half wavelength rolls up to form a

vortex rod aligned with the local direction of the braids, as shown in

figure 9. The vorticity within these rods is constantly amplified as the
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strain field in the streamwise direction, generated by the large spanwise

cores, strains the flow along the direction of the braids. With elongation,

these rods wrap around the spanwise cores and produce the distribution shown

in figure 8.

The deformation of the flow field due to the evolution of the two and

three-dimensional instabilities leads to a substantial enhancement of mixing

within the large structures by generating strong entrainment currents of

fluids from both sides of the shear layer towards the vortex center. The

mixing enhancement, and its effect on the burning rate are discussed in

detail in the next sections.

IV. THE TRANSPORT ELEMENT METHOD

Given that s is a passive, nondiffusive scalar, the conservation

equations for s, and g - Vs, in an incompressible flow are:

ds O, (10)

and

t - - Vu-gx . (11)

Thus, s remains constant along a particle path, while g changes due to the

straining and rotation of the material lines by the local strain field and

vorticity. If the material is exposed to a strong strain in the direction

normal to the gradient, the value of g must increase by the same amount as

the stretch in the material element. This can be seen by deriving an

explicit equation which relates the changes in g - Igl to the variation of

material elements, or the distortion of the flow map. This is done by

expanding Eq. (11) in terms of g n, and implementing kinematical relati-ms

that describe the variations of n = g/g, where n is the unit vector normal
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to an isoscalar line, i.e., a line along which s is constant. After some

lengthy manipulations, we get:

1-g (nu +-2 n x w-(l.(n-9uS))1), (12)

where Vus is the symmetric part of the strain tensor Vu and 1 is the unit

vector normal to n. Moreover, g - (ds/dn) n - (Ss/&n) n, where Ss is the

variation of s across a small material line Sn. In two dimensions and for

an incompressible flow, the variation of a material vector element 61 can be

shown to be governed by a similar equation to Eq. (12).

IV.1. NUMERICAL SCHEME.

From the above discussion on the relationship between scalar gradients

and the deformation of the flow map, it follows that g/61 - constant along a

particle path, and that the scalar gradient can be computed from the

following relations (7]:

N 2
g(x,t) E E gi(t) h f8(x- xi(xilt)), (13)

where

Ss. 61i(t)
gi(t) - h2 ni(t), (14)

and Xi(Xit) is, as before, a particle path. Equation (13) is based on the

expansion of g in terms of the core function f6, similar to Eq. (2). Since

an isoscalar line is a material line in a nondiffusive field, 61i can be

updated as: 61i(t) - (X,+l-X,_l)/2, while ni'l i = 0. Thus, it suffices to

move the centers of the transport elements while remembering the near

neighbors at t - 0. As in the vortex method, when the distance bet;ween

neighboring elements in the direction of maximum strain exceeds a certain

maximum, an element is inserted between two neighboring elements. The total
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of 81 i's for the two original elements are distributed among the three

elements, while h2 and 62 are adjusted so that the total material area is

conserved, keeping Ssi the same.

For a variable-density flow, the above analysis is modified to reflect

the fact that, in this case, an equation similar to Eq. (12) can be derived

with g replaced by p 61, and the expression of gi in Eq. (13) changes to

[12,27]:

Ssi 61i(t) Pi(t)Pi(  (15)

The value of p is computed using the relation p T - constant in the low Mach

number approximation (see Section V). Given the location and strength of

the transport elements, the scalar concentration are computed by direct

integration over the fields of the transport elements

N 2
s(x,t) = E gi(t) h VG (-Xi(Xi,t)), (16)

i=l

where, in two dimensions, VG6(x) - (x,y)/2nr2  K(r/6), and in three

dimensions, VG(x) - (x,y,z)/4nr3 K(r/6). This formulation is fully

compatible with the vortex method since all the information needed to

compute the scalar transport are already part of the vortex computations,

including all the expressions of the Green functions. For extended

derivations, see [24,27].

The effect of molecular diffusion in the vortex and transport element

methods can be modeled by expanding the cores of the elements according t-

the following relation, 62(t+6t) = 6 2(t) + 2 a At, where At is the time step

and a is the molecular diffusivity [61. This relation is obtained by direct

substitution of Eq. (11) into the diffusion equation. A limit should be
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imposed on the maximum allowable value of 6 to maintain the spatial accuracy

of the calculations. Beyond 8max' an element should be subdivided into a

number of smaller elements. Another scheme for implementing the effect of

diffusion without expanding the cores was proposed in [28]. This scheme is

used in conjunction with the three-dimensional transport element method in

Section IV.3.

IV.2. SCALAR MIXING IN SHEAR LAYER

The transport element method was used to study the transport of species

in a two-dimensional, heterogeneous shear layer (12]. Figure lb shows the

isoscalar lines of the shear layer of figure la when the diffusivity is

zero. Numerically, we found that, provided the field is accurately

discretized initially, the condition ds/dt = 0 is satisfied if the core

radii of the elements are allowed to decrease at the rate described in

Section II, i.e. if h2/62  remains constant as the elements are deformed.

This also guarantees that the scheme can capture, without introducing

numerical diffusion, the large scalar gradients that arise from the strong

deformations in the flow which accompany the evolution of the instability.

Figure 10 shows a comparison between the computed and the measured

values of the mean concentration and the root-mean square of the

concentration fluctuations in the two-dimensional spatially developing

mixing layer of figure 2a (12,291. The computational results were obtained

for a range of Peclet number between 103 and 105, so that the dominant

transport process was convection and not diffusion. However, the effect of

species diffusion was incorporated to study mixing. The effect of diffusion

on the mean scalar distribution is very small since the overall

concentration field is established by the convective field, also called the

entrainment currents. Due to the roll-up of the vorticity layer, fluid from



26

both sides of the shear layer are engulfed into the large structure and, on

the average, mean values, between the two extremes, can be encountered.

The root-mean square of the concentration fluctuations exhibit strong

dependence on the Peclet number. Its maximum value, 0.5, can only be

achieved at very high Peclet number where strong unmixedness is present

inside the cores of the eddies. As the effect of molecular diffusion

increases, it homogenizes the cores and the fluctuations drop below 0.5. In

this case, the profiles show a mixed region of constant value of

fluctuation. For all values of the Peclet number, the fluctuations never

reached zero inside the cores indicating that the fluid does not reach

complete homogeneity. Another interesting feature of these mixing flows, is

the presence of more high speed fluid than low speed fluid inside the cores

(121. This mixing asymmetry, which is a direct consequence of the unequal

velocities across the interface of the layer, will be shown to play an

important role in the distribution of products.

IV.3. ENTRAINMENT ENHANCEMENT DUE TO 3D INSTABILITIES

The three-dimensional transport element method is based on the

relationship between the distortion of the flow map and the scalar

gradients, as in the two-dimensional method. In 3D, the distortion of the

flow is represented by the changes in the magnitude and direction of a

material area element initially aligned with an isoscalar surface aA. This

relationship was derived in [24,30] for a variable density flow;

d ln g - dtln (p &A). (17)

Equation 17 indicates that g/(p &A) = constant along a particle path. TO

implement this relationship in the calculations of the scalar gradients, one

must keep track of the area of the elements associated with computational
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points moving along particle trajectories. Similar schemes are used in the

vortex element method to monitor the effect of the strain field on the

evolution of the vorticity field. Thus, the computation of the scalar

transport is a natural extension of the vortex element method since it does

not require additional computational effort.

The entrainment due to the development of three-dimensional

instabilities in shear flow is depicted in figures 8 and 9 where we show the

scalar contours on the same planes where the streamwise vorticity contours

are displayed. The extra entrainment, over what is observed in two-

dimensional calculations, is induced by the action of the spanwise

deformation of the vortex core and by development of the streamwise vortex

rods within the braids, as shown in figures 8 and 9, respectively. The

total entrained fluid within the large eddies is measured by the size of the

eddy in the cross-stream direction, and shown in figure 11 for both the two

and the three-dimensional calculations [24,261. The effect of this extra

entrainment on the rate of burning will be discussed in Section VI.2.

V. VORTEX METHODS FOR VARIABLE-DENSITY FLOWS

In combustion phenomena of practical interest, the flow is density

stratified, i.e. finite and large density gradients exist between material

layers, due to heat release and the variation in molecular weight of

reacting species. The effect of density gradients is to introduce a

baroclinic source term in the vorticity transport equation. In this

section, we show how this term is included in the simulation, and describe

its effect on shear layers. Considering an incompressible, inviscid,

variable density, the conservation equations are:

dp = 0 (18)
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d= 1 (9
= --t VP x Vp + ( . Vu, (19)

where Vp - p du/dt and Vp is computed using the transport element method

as described before. Extensions to gravity-driven at finite Froude number

are considered in (27,311. To take the extra term in Eq. (19) into account,

the computational algorithm proceeds in fractional steps: (1) the vorticity

is transported without change along the particle trajectory, Eq. (8); (2)

the material acceleration along the particle path is computed to find the

pressure gradient; (3) the change in the density gradient along the particle

path is evaluated using the transport element method, Eq. (14); and (4) the

vorticity is updated according to the discrete analog of Eq. (19),

dri Vpi x (d)i i" (20)
i - TxW h. (20

V.1. BAROCLINIC EFFECTS IN SHEAR LAYER.

Computations of a variable density shear layer were performed to

investigate the effect of baroclinic vorticity generation on the growth rate

of the Kelvin-Helmholtz instability, the rate of entrainment and the rate of

expansion of a shear layer. Figure 12 shows a sample of a two-dimensional

simulation in which the fast top stream is five times heavier than the slow

bottom stream. This configuration resembles the experimental set-up used to

study a shear layer between premixed reactants moving in the top stream and

products of combustion moving in the bottom stream [34]. The computed

initial growth rate and phase velocity of the growing waves compared well

with the results of the linear stability theory [12, 35).

In the nonlinear range, the computational results indicate that density

variation: (1) induces a net convective motion on the eddy in the direction

of the heavy stream; (2) enforces entrainment asymmetry on the growing eddy
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which results in the presence of more light fluid than heavy fluid, by

volume, within the core; and (3) destabilizes the flow leading to the

formation of large scale structures within the large scale structure. It

was also observed that baroclinic vorticity enhances entrainment over that

of the uniform-density case. Using a Galilean transformation between the

temporal and spatial shear layer, i.e., dS/dx - 1/Uc d&/dt where uc is the

finite convective velocity, one can show that a shear layer in which the

heavy stream moves faster than the light stream will grow more slowly in the

streamwise direction than a uniform density layer, in agreement with

experimental observations (36].

Similar changes were found in the results of a three-dimensional

simulation of a variable density flow. Figure 13 shows a sample of these

results for the case of a top, fast stream is twice as heavy as the bottom,

slow stream [30]. The results are represented by the grid used to describe

the material surface initially aligned with the midsection of the shear

layer, as in figure 7. The motion of the developing eddy, its asymmetry

with respect to the top and bottom streams and some added asymmetry in the

spanwise direction are clearly seen in the figure. Secondary instabilities,

leading to the deformation of the spanwise core and the formation of

streamwise vortex rods within the braids, are similar to those encountered

in the two-dimensional simulations.

The dynamic origin of these phenomena is the generation of vorticity

due to the baroclinic torque. The misalignment of the density and pressure

gradients within the growing eddy leads to the generation of additional

vorticity with two opposite signs on the two sides of the shear layer, as

shown in figure 12. In the case considered here, vorticity of a similar

sign as that of the shear layer is generated on the light, slow fluid side
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while vorticity of the opposite sign is generated on the fast, heavy fluid

side. This redistribution of vorticity within the growing eddy leads to

more entrainment from the lower, light fluid side of the layer and a net

streamwise motion of the large eddy in the direction of the heavy fluid.

The computed entrainment ratio and finite eddy velocity were found to agree

with experimental results (321. In Section VI.4, we show how baroclinic

vorticity generation affects combustion in premixed shear layer.

The effect of baroclinic vorticity on the instability of a jet was

presented in [14], without and with the effect of Froude number. The role

of baroclinir vorticity in determining the structure of low-speed jet

diffusion flames is analyzed in (271. The extension of the calculation of a

variable density flow to a premixed shear layer, and the corresponding role

of baroclinic vorticity are discussed in Section VI.4.

VI. VORTEX METHODS FOR REACTING FLOWS

The transport element method was extended to reacting flow [7,35,37].

In combustion systems, heat release at low Mach number leads to the

generation of an irrotational velocity field, V*, which when superimposed on

the existing vorticity-induced rotational velocity, u., represents the total

velocity in a reacting flow. The low Mach number approximation is employed

to filter out the pressure waves and to render the pressure independent of

the density in unconfined flows [38]. Employing the velocity decomposition,

the governing equations of combustion can be written as follows:

U - u + VO, (21)

720 1 dT (22)

-2 Vp x Vp - c (V.u) + (W.V) u + 1 V2 , (23)
p e
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dT 1 2 (4
T V2T + Q W (24)

e

dc V2ck + Wk , (25)

S- " e Le

p T - constant, (26)

where T is temperature, c is species concentration, W is the rate of

creation/destruction of species, Q is the enthalpy of reaction, Re, Pe and

Le are the Reynolds, Peclet and Lewis numbers, respectively. Here, we

assume that (1) the transport properties are constant except for mass

diffusivity which is replaced by a density-averaged value; and (2) molecular

weights of reactants and products are the same. The pressure gradient is

obtained from the momentum equation: Vp/p - - a + l/(pRe) V 2u, where a -

du/dt. Both velocity components, uW and Vt must satisfy the velocity

boundary condition in the direction normal to the boundaries of the domain.

Using the principle of* vortex decomposition, i.e., discretizing the source

term in Eq. (22) in a form similar to Eq. (2), Green's function solution of

Eq. (22) can be written as (7]:

iXt) - E (dT) h (t) VGS(x-xi(Xi.t)). (27)

i-i ~~i i

The energy equation and the species transport equations, Eq. (24) and

(25), respectively, are solved using the transport element method in three

fractional steps: convection, diffusion and reaction. The reaction

fractional step is implemented by changing the strength of the transprot

elements according to the following expression [7):

d k+l dW
SSs i  E T-. sj , (28)j-1i
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where k is the total number of species and Sk+l = T.

In the following, we review four solutions of reacting shear layers,

computed using the transport element methods. The first three solution are

obtained for the reaction between two streams of fuel and oxidizer, and the

fourth is for a reaction between a stream of premixed reactants and a stream

of products. In the first two cases, an incompressible flow model was used

to eliminate the complexity of the effect of heat release on the flow

dynamics. In the third and fourth cases, a compressible flow model was

used. In all cases, we focus on the mechanisms of shear flow-combustion

interactions under different physical conditions.

VI.. THE REACTING SHEAR LAYER

A computation of a reacting shear layer between a fuel stream, F, and

an oxidizer stream, 0, in a spatially developing flow was described in

[39,40]. The incompressible flow model, p - constant, was used to

investigate how the flow which evolves due to the roll-up instability

affects the combustion process. The chemistry is modeled by one-step

reaction kinetics, F + 0 -> P, and the reaction rate is taken as W - Af cF

c0 exp(-T/Ta), where Af is the frequency factor and Ta is the activation

energy normalized with respect to the gas constant. A sample of the

results, obtained for Ta/TR - 10, Af= 8000 and Q = 1, is shown in figure 14,

revealing a strong similarity between the temperature, product concentration

and the vorticity contours, being highest within the cores and reaching very

small values within the braids. A large eddy, defined by a closed set of

vorticity contours, figure 14c, can also be described by a set of closed

product concentration contours, around the same origin and of the same shape

as the vorticity contours, figure 14b. This similarity confirms the

important role of advection, which is governed by vorticity in this case, in
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determining the local concentration field, the rate of mixing and the rate

of burning.

The effects of the shear layer roll-up, the Damkohler number, Reynolds

number and reactants ratio across the layer are shown in figure 15. These

results were obtained for a temperature-independent reaction in which W - Da

cF cp , where Da is the Damkohler number. The roll-up of the shear layer

enhances product formation over the laminar layer by inducing strong

entrainment currents into the cores. A drop in the total product formation

in the early stages is due to the thinning of the reaction zone by the

strain field. Product formation depends strongly on the Damkohler number.

This dependence, however, vanishes and the total amount of product formed

within the layer reaches an asymptotic value at Damkohler number on the

order of 20, based on the length scale of the large structures. This is the

fast chemistry limit at which the rate of product formation depends only on

the mixing rate.

At high Reynolds numbers, of an order of 10000 based on the length

scale of the large eddies, product formation is a weak function of the

Reynolds number. This indicates that while mixing is strongly enhanced by

convective entrainment, it is also globally limited by it. The mechanism of

this apparent double role is explained as follows. when the Reynolds number

is high, diffusion between the reactants occurs across a highly convoluted

interfacial layer embedded within the large structures at a much faster rate

than the entrainment of the reactants into the large eddies. Thus, changing

the diffusion rate by varying the Reynolds number does not affect the

product formation since the process is entrainment limited.

The phenomenon of mixing asymmetry, which arises due to the finite

velocity difference between the two streams [7], is shown in the product
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distribution in figure 14b, and is manifested in the dependence of the

product formation of the reactants ratios in figure 15c. The reactants

ratio is defined as the ratio between the two reactants concentrations

across the layer. For equal concentrations of reactants in the two streams,

the average product concentration in the lower, slower stream is

persistently higher than in the upper, faster stream. This is because the

large structures entrain more high-speed than low-speed fluid. The bias

towards the entrainment of the high-speed stream results in a faster

chemical reaction in the lower section of the layer than in the upper

section. Increasing the concentration of either reactants enhances the rate

of product formation since the chemical reaction becomes faster. However,

to improve the overall rate of burning, it is more effective to increase the

slow-stream concentration to compensate for the entrainment asymmetry.

VI.2. 3D REACTING SHEAR LAYERS.

We have shown in Section III.3 that three-dimensional secondary

instabilities follow the saturation of the two-dimensional instabilities.

The complicated mixing patterns, which arise due to the evolution of three-

dimensional instabilities in shear layers, are revealed by the results of a

reacting flow simulation between a stream of fuel and a stream of oxidizer

[30]. Figure 16 shows product concentration and reaction rate contours on

(a) a spanwise x-z section which passes through the midsection of the domain

of figure 7; and (b) and (c) the two streamwise y-z sections used to depict

vorticity in figures 8 and 9. An incompressible, temporal, periodic flow

model, and a reaction rate W = Da c0 c FF are used. The physical parameters

are: Da = 10, Pe = 1000 and Le = 1. We only show the late stages when th,:e

dimensional effects become important.
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These figures show an unexpected inhomogeneity of mixing, and

combustion inside the cores in the streamwise and the spanwise directions,

even at the late stages of instability development. As mentioned before,

these flows are entrainment dominated. The mixing between the two streams

is initiated along convoluted interfaces which are produced by the uneven

stretch within the large structures. The stretch is a consequence of the

vorticity instability. Diffusion, a process much slower than convection at

high Reynolds number, occurs within these thin, convoluted zones. The

chemical reaction at Da - 10 converts mixed reactants into products almost

immediately. Thus, products are formed within thin convoluted zones

embedded inside the large structures.

In two-dimensional simulations, products are found inside the large

cores. In three-dimensional simulations, products are found within the

large cores and within the braids due the formation of the rods. In both

cases, zones of maximum strain in the spanwise and streamwise planes are

depleted of products by mechanisms which will be discussed next section.

Thus, 3D simulation confirm our earlier observation that product

concentration is maximum where vorticity concentration is highest, and that

at zones of high strain and small vorticity, product concentration is

lowest. This correlation holds at all times and across all sections. This

correlation has been observed in the spanwise plane in several two-

dimensional computations [40]. In the streamwise planes, the correlation

between vorticity and product concentration is supported by figures 16b and

c; and figures 8 and 9.

The dynamic origin of this correlation is revealed by inspecting the

reaction rate contours shown in figure 17. At the early stages, products

form at the center of the eddies where mixing occurs due to the entrainment
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field. Later, reaction is maximum at the outer edges of the structure.

Thus, at this high value of Da, product formation zones move from the center

of the core to the outer edges of the eddies. However, at all stages, the

entrainment field draws the products towards zones of maximum vorticity

which exist inside the cores and the rods. Thus, although products may form

away from the zone of maximum vorticity, they are constantly brought there

by the convective field.

The reaction zone does not exhibit a similar correlation with the

vorticity. It has, thus, been suggested that vorticity be used as a primary

variable in turbulent combustion models [41].

VI.3. THE REACTING JET.

The effect of exothermic energy on the flow dynamics and the structure

of the reaction zone was investigated in the case of a reacting jet of fuel

issuing in an atmosphere of oxidizer [27,42]. The flow is two-dimensional

and planar and the jet forms two vorticity layers with two opposite signs on

both sides of its centerline. We used a compressible flow model, Eqs. (21)-

(26), and a single step Arrhenius reaction, W - Af cF cO exp (-Ta/T).

Figure 17 depicts the product distribution for Af - 150 and 750. Both were

obtained at Pe = 1000, L - 1, Tp/TR - 4, Q - 3, and Ta/TR - 10. The

initial perturbation amplitude is e - 0.05 X, where X is the wavelength in

the streamwise direction. Figure 18 shows the reaction rate contours for

the two cases.

VI.3.1. PRODUCT DISTRIBUTION

At high Damkohler number, product concentration is higher due to the

faster chemical reaction, and the eddies are larger due to the extra heot

release, as shown in figure 16. At both values of Da, product concentration

within the shear layers changes from a uniform distribution in the
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streamwise direction to a highly-concentrated distribution within the large

eddies as the flow evolves. Product concentration within the braids,

however, decreases continuously. The thinning of the braids, due to the

formation of a strong strain field as the eddies roll-up, reduces the zones

of overlap between the jet and oxidizer fluids, of the zone of chemical

activity. Moreover, the large relative velocity between the jet and

oxidizer streams within the braids also reduces the time available for

mixing within this region. Finally, the entrainment currents convects

products forming within the braids into the cores leading to continuous

cooling of the region between neighboring eddies. This the physical

mechanism of reaction extinction within the braids. Clearly, it is

convection-driven.

The similarity between product distribution and vorticity, observed in

Section VI.l, persists in the case of a reacting jet, both at low and high

Damkohler number. Both product concentration and vorticity exhibit high

values within the eddies and fall continuously along the braids. Thus,

vorticity still controls product distribution within the eddy. At high

Damkohler number, vorticity produces a swirling field that enlarges the

surface of contact between the two reactants, diffusion mixes them across

the stretched surface, and products form. The swirling convective field

then entrains these products into the eddy core. At low damkohler number,

reactants are entrained into the cores and then react. The difference

between the two mechanisms is illustrated by examining the reaction rate

contours for both cases.

VI.3.1. STRUCTURE OF THE REACTION ZONE.

At low Damkohler number, reaction rate contours presented in figure 17

show that the zone of chemical activity, initially uniform in the streamwise
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direction, is enlarged during the entrainment phase of the eddy. The mixing

of jet and ambient fluids, induced by the rotational field within the eddy

core, extends the area of combustible mixture. Moreover, the reaction rate

inside the eddies increases with time triggered by the acceleration of the

chemical reaction as the temperature rises due to the formation of more

products. Large eddies, thus, act as exothermic centers that support

combustion. At this low Damkohler number, an eddy acts as "mixture

preparation zone" before combustion proceeds. This is consistent with the

fact that the rotational flow within the eddy occurs at a smaller time scale

than the chemical reaction.

At high Damkohler number, the reaction zone differs substantially from

that at low Damkohler number. At early stages, the reaction rate is maximum

inside the eddy where combustion occurs over a distributed zone. In this

case, both reactants are drawn into the mixing zone within the eddy core

before they combust. At late stages, combustion occurs on the outer edges

of the eddies within a thin reaction zone. Now, reactants coexist only

around the outer edges of each eddy where they react and form products which

are then entrained into the eddy core. Note that with finite-rate kinetics,

and with low-temperature reactants at the early stages, there is an ignition

delay which keeps the kinetic rate lower than the mixing rate. As the

temperature rises, kinetic rates exceed mixing rates and the reaction region

becomes a thin zone between jet and ambient fluids.

At low and high Da, the reaction rate within the braids drops sharply

as the eddies form due to the entrainment of products into the eddy c=res

(Note that since the Lewis number is unity, temperature and ,'h,-

concentration are similar). Product formation is inhibited within the

braids following their cooling by convection.
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VI.3.3. EFFECT OF HEAT RELEASE.

In a reacting flow with finite-rate kinetics, we found that heat

release reduces that rate of growth of the instability [27] when the initial

perturbation is small, c - 0.01 X. The suppression of the instability

becomes stronger as the Damkohler number is increased. Similar suppression

of instability is observed at infinite-rate kinetics at a range of initial

perturbation c = 0.01 - 0.05 X [42]. In both cases, eddy growth in the

direction normal to the jet axis is reduced as the Damkohler number is

increased. The reason is as follows: At infinite-rate kinetics, exothermic

energy and volumetric expansion start early, within the linear stages of

instability growth, forming a sublayer of low-density products within the

vorticity layer. Within these stages, it has been shown that the presence

of low-density sublayer within the vorticity layer leads to substantial

reduction of the instability growth rate [431. The delay in roll-up results

in the formation of a weak, less coherent eddy. Even at finite-rate

kinetics with small initial perturbation, an appreciable amount of products

forms within the vorticity layer before the instability amplitude is large

enough to initiate roll-up. In this case, the early formation of a low-

density sublayer of products, embedded within the vorticity layer, precedes

the rollup and leads to an overall reduction in the instability growth rate.

At finite-rate kinetic with large initial amplitude, c - 0.01 X,

instability suppression is negligible, as seen in Figure 17. Thus, one can

overcome the stabilizing effect of volumetric expansion on shear layer

growth by forcing the jet at large amplitudes. Initiating roll-up, before

measurable volumetric expansion has occurred, causes eddy formation and the

onset of mixing enhancement during the ignition delay time. Very small
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initial perturbations with high exothermic energy, on the other hand, result

in instability suppression.

VI.4. THE PREMIXED SHEAR LAYER

Computations of a shear layer growing between two streams of premixed

reactants and products were presented in [7,35]. In this case, the reaction

rate, based on one-step reaction kinetics R -> P, is expressed as W - Af CR

exp(-T/T a). Results for a range of Damkohler number and initial amplitude

of perturbations are presented. A sample of the results is shown in figure

19 in terms of the rate of reaction, the product concentration, and the

vorticity for the case of Ta/TR - 10, temperature ratio TP/TR- 5, Q - 4, Af-

1, Pe " 1000 and L - 1. Figure 20 shows the total mass of products formed

within the layer for the same physical parameters but for several values of

the Damkohler number. The length of the line of maximum reaction rate, and

the total mass of product for a representative case is shown in figure 21.

A careful inspection of these results reveal several interesting

observations.

Figures 19 and 20 indicate that one can divide the combustion in a

premixed shear layer into four phases: (1) a laminar flame; (2) a strained

laminar flame; (3) a vortex-driven combustion, (4) a free-propagating flame.

In the second phase, the reaction zone in figure 19 is thinner than that of

a laminar flame due to the strain, and the total amount of products formed,

MP . p cp dy dx, is less for the shear layer than for the laminar flame,

MP - Su X where X is the perturbation wavelength. In the third phase, the

entrainment associated with the formation of a coherent vortex leads to the

swelling of the core and the establishment of a reaction zone inside the

eddy core. Figure 20 shows that the formation of a vortex core enhances the

rate of burning. As the flame leaves the burning vortex, it returns to the
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state of a laminar flame. Since these phases result from the interaction

between the flow and the chemical reaction, their starting time and duration

are strongly dependent on the Damkohler number.

Figure 21 shows that the wrinkled flame model, which states that the

rate of product formation Mp - Su  Lf where S is the laminar burning

velocity and Lf is the total flame length, can be used to approximate the

burning rate duLing the initial growth phase of the eddy provided that Lf is

measured along the line of maximum reaction rate. However, during the later

stages, the value of Su , as defined above, is found to decrease below the

value of the unstrained flame. During the later stages, after most of the

eddy core has burnt, it is difficult to define a flame front due to the

convolution of the streamlines and further studies of the detail structure

of the reaction zone is needed.

Baroclinic vorticity generation, associated with the interaction

between the hydrodynamic pressure gradient and density field, contributes to

the dynamics of the shear layer in the same way as in the nonreacting,

density-stratified shear layer described earlier: the large eddies move in

the direction of the cold reactants; entrainment asymmetry biases the

composition of the large eddies towards the hot product stream; and local

spotiness appears within the large eddy. One difference is clear by

comparing figures 12 and 19: heat release slows down the streamwise motion

of the large eddies. Due to the volumetric dilatation associated with heat

release, the local concentration of vorticity decreases and the induced

field on the vortex weaken. Thus, heat release weaken the instability

through the mechanism of volumetric expansion and not vorticity generation.

Heat release at high Damkohler number reduces the growth rate of the

instability at the initial stages and inhibits the rollup process if the
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initial perturbation is small, c = 0.01 X, similar to the reacting jet case.

The mechanism of instability suppression in this case is different from that

found in the reacting shear layer. In a premixed shear layer, baroclinic

vorticity by itself enhances the instability growth rates, as shown before.

Volumetric expansion is, thus, necessary for instability suppression in the

premixed shear layer flow.

The effect of the Damkohler number on the structure of the reaction

zone is similar to the reacting jet; at low Damkohler number, reaction

occurs within the eddy core and at high Damkohler number, it occurs

primarily on the outer edges of the eddy. As in the reacting shear layer,

product concentration is always higher at the center of the eddy (premixed

shear layer are however more subtle since product forming during the

development of the shear layer and products existing at the initial state

ate not easily distinguishable). As shown in figure 20, the effect of the

shear layer on the burning rate is stronger at low Damkohler number.

VII. EXTENSIONS

Work reviewed so far focuses on combustion in free shear flows. Brief

summary of the numerical methodology and its application to nonreacting and

reacting shear layer has been presented. Analysis of the computational

results aimed at testing the accuracy of the numerical schemes and

describing some of the general properties of these flows. In the reacting

flow, mechanisms of shear flow-combustion interactions were analyzed in

light of the numerical solutions.

The application of vortex methods to internal, wall bounded flows in

which the growth of boundary layers along solid walls and their separatinn

at sharp edges play a dominant role in the dynamics of the flow, has been

based largely on the random vortex method. In this method, the effect of
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molecular viscosity is taken into account by adding a Gaussian random

component to the convective motion of the vortex elements (44,451.

Extensive work on the validation of the method (46,47] shows that solutions

for steady, low Reynolds number flows, and unsteady, high Reynolds number

flows converge to appropriate limits as numerical parameters are refined.

Low-Reynolds-number results were in agreement with experimental measurements

on velocity distributions within the flow. At high Reynolds number, results

were shown to converge to oscillatory flows that can be characterized by

time-dependent clusters of large scale vortices. The dependence of the

shedding frequency and growth rate of these structures on the geometry were

investigated in [48]. The interactions between jet flow, recirculating flow

and annulus flow, encountered in bluff-body flame burner, has been revealed

in a vortex simulation [49].

The random vortex method was also applied to study reacting

recirculating flows of premixed gases at high Reynolds numbers [50,51]

utilizing the thin flame approximation [52] to model the combustion process.

Results were used to study vorticity-flame-pressure interactions in a

semiconfined, recirculation-stabilized premixed flame. Analysis of these

results show how the volumetric expansion associated with burning can reduce

the amplification of flow oscillation in recirculating flows when the

pressure is kept constant, and how these oscillation can be amplified

leading to large flame oscillation if the pressure field within the system

is coupled with the flow processes [51,53]. These results address the

problem of turbulent flame stabilization in a premixed stream and the

associated combustor instabilities observed in such systems.

VIII. CLOSURE
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Numerical simulation, using accurate schemes to integrate the unsteady

equations governing reacting flow, can be applied to investigate important

mechanisms of shear flow-combustion interaction in different systems and

within a wide range of physical parameters. Mechanisms of flow combustion

interaction are different in nonpremixed and premixed shear layers.

Entrainment, associated with the formation of structures that develop due to

natural shear flow instability, is the primary mechanism by which the flow

enhances the rate of burning in both cases. Burning enhancement is

substantial, especially at low Damkohler number where entrainment changes

the reaction region from a thin front into a distributed zone. Strain may

have some effect on the burning mechanisms especially at low Damkohler

number where local extinction has been observed at regions of high strain

rate in the nonpremixed shear layer. In the premixed shear layer, the

reduction in the rate of burning due to strain is greater at high-Damkohler

number.

Heat release establishes zones of density gradient within the vorticity

layer. Baroclinic vorticity, generated from the interaction between these

density gradients and material acceleration, reduces the growth rate of the

instability in the nonpremixed case while enhancing it in the premixed case.

The later occurs even in the nonreacting case. Volumetric expansion,

however, suppresses the instability in both cases. The effect is more

pronounced at high-Damkohler number. Volumetric dilatation reduces the

vorticity and weaken the large structures. Forcing at high amplitudes in

the initial stages can be used to overcome this instability suppression.

Work is under way to extend the numerical methodology in diffet rit

directions, e.g., (1) the formulation of a transport element method for

confined flows in which the interaction between the interior flow and the
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wall thermal boundary layer is important; (2) the application of the

transport element method to flows in which pressure-density interaction

plays a significant eynamic rol, [541; (3) the implementation o fast

solvers to reduce the computational effort from O(N 2 ) to O(N) (55]; (4) the

implementation of a methodology to allow the application of the scheme to

extended, multistep chemical kinetic models; and (5) the formulation of

Lagrangian schemes for multiphase flow such as fuel droplets in gas streams.
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FIGURE CAPTIONS
Figure 1. The rollup of an incompressible, uniform density, nonreacting,
temporally-growing shear layer in which the top and bottom streams move at
the same speed but in opposite directions and the initial vorticity
distribution is gaussian. The initial amplitude of the sinewave
perturbation is 1% of its wavelength, which is taken as the most unstable
wavelength for this flow. The results are shown in terms of (a) the vortex
elements and their velocity vectors; and (b) the isoscalar lines (s - 0 in
the top stream and s - 1 in the bottom stream with an error function
distribution in between).

Figure 2. The development of an incompressible, nonreacting, spatially
developing shear layer between a fast, top stream and a slow, bottom stream.
The velocity ratio across the layer is 2 and the vorticity distribution at
the left-hand side of the domain, where the splitter plate ends, is
gaussian. The figures show all the vortex elements used in the computation
and their velocity vector (measured with respect to the mean velocity of the
flow). The confining walls are slip boundaries. Three cases are shown: (a)
the layer is unforced. (b) the layer is forced at the most unstable
wavelength and the amplitude of the perturbation is 1% of the wavelength.
(c) The layer is forced at the most unstable wavelength and its first
subharmonic, and the two amplitudes are equal to 1% of the fundamental
wavelength.

Figure 3. (a) Time-average streamwise velocity profiles for the case shown
in figure 2a, computed at sections x - 3, 3.5, 4, 4.5 and 5. x is measured
from the left-hand side of the domain, x - xO, and is normalized with
respect to the channel height, while yO-O. Uh and U1 are the high and low
speed stream velocities. Computational results are shown in solid lines and
experimental measurements of Masutani and Bowman [29] are shown in open
symbols.
(b) Time-average streamwise velocity fluctuations for the same case as in
(a), computed at the same sections and plotted against experimental
measurements from the same reference.

Figure 4. The deformation of a thin vortex ring, represented computationally
by a single vortex filament, when excited at an unstable wavenumber (number
of waves around the ring) of six. The radius of the ring core is 0.25 of
the radius of the ring. The plots are obtained by projecting the ring on
two planes normal (on the left-hand side) and parallel (on the right-hand
side) to the direction of propagation of the ring under its own self-induced
velocity.

*

Figure 5. The wavenumber of the most unstable mode, n , of a vortex ring
plotted against its normalized self-induced velocity, V = 4nRV/r where R and
r are the radius and circulation of the ring, respectively. The figure
shows a comparison between the experimental results, x; the analytical
results of the long wavelength instability, o; the numerical results of the
long wavelength instability, 6; the analytical results of the sh-vt
wavelength instability, for constant vorticity distribution within the
core and + for quadratic vorticity distribution; and the computed results of
the short wavelength instability, <> for coarse numerical discretization and
i for fine discretization.
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Figure 6. Perspective views, taken form the point of view of an observer
standing ahead of the ring and looking at an angle 60 with respect to the
direction of propagation, of a vortex ring whose core radius is 0.275 of the
ring radius. The ring is initially excited using 12 waves around. All the
filaments used to discretize the ring are shown. The ring is propagating
upwards.

Figure 7. Three-dimensional perspective views of the isoscalar surface s -
0, initially coinciding with an x-y plane located in the middle of the
domain shown in the figure. The shear layer is periodic in two directions.
At time t = 0, the layer is perturbed in the streamwise direction, x, at the
most unstable wavelength, and in the spanwise direction, y, at one-half of
this wavelength. The amplitudes of the perturbations are equal to 2% of the
streamwise wavelength. The initial vorticity follows a gaussian
distribution in the spanwise direction, z, as in the two-dimensional case.

Figure 8. (a) Streamwise vorticity; and (b) scalar distribution in the
three-dimensional simulation of the periodic shear layer shown in figure 7.
Contours are shown in a y-z plane which cuts through the core of the
spanwise eddy at the middle of the domain of figure 7. Positive vorticity
is indicated by broken lines while negative vorticity is depicted by
continuous lines. For the scalar, s > 0 is shown in continuous lines and s
< 0 is shown in broken lines, -0.5 < s < 0.5.

Figure 9. (a) Streamwise vorticity; and (b) scalar distribution in the
three-dimensional simulation of a periodic shear layer shown in figure 7.
Contours are shown in the y-z plane which cuts through the braids at a
distance 15% of the wavelength into the domain from the left-hand side. See
figure 8 for convention.

Figure 10. (a) Time-average scalar concentration for the flow in figure 2a,
computed at x - 5 for a range of Peclet number, P . At x - 0, the
concentration is s - 0 in the upper stream and s - 1 the lower stream.
Solid lines show the results of the computations and open symbols depict the
experimental measurements of Masutani and Bowman [291.
(b) Time-average concentration fluctuations for the same flow as in (a).

Figure 11. The eddy size in the two, v; and three , x; dimensional
computations of figures 1 and 7, respectively. The eddy size is defined by
the cross-stream distance between the contours s - 0.03 and s - 0.97.

Figure 12. The rollup of an incompressible, nonuniform density, nonreacting,
temporally-growing shear layer in which the top, heavy stream moves to the
right and the bottom, light stream moves to the left at the same speed. The
initial conditions are the same as in figure 1, except for the density
distribution across the layer which is taken as an error function. 1 <
S. The density ratio across the layer is five. The results are shown in
terms of: (a) the isoscalar lines (s = 0 and in the top stream and s = I in
the bottom stream); and (b) the vorticity contours. Broken lines indi-t-
positive vorticity and solid lines indicate negative vorticity.

Figure 13. Three-dimensional perspective views of the isoscalar surface s =
0, initially coinciding with an x-y plane in the middle of the domain. The
flow is incompressible but with variable density. Initially, the streamwise
velocity and density vary only in the cross-stream, z-direction according to
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similar error functions with different boundary conditions: -1 < u < 1 and 1
< p < 2. The shear layer is periodic in the x and y directions. All other
conditions are similar to the case presented in figure 7.

Figure 14. Results of a computation of a spatially-developing, reacting
shear layer using an incompressible flow model and Arrhenius chemical
kinetics. Figure 2a shows the vortex elements are their velocity vectors
for this case (since the flow is incompressible, the reaction does not
affect the dynamics). The figure shows contours of (a) the top zsLream
reactant's concentration; (b) product concentration; (c) vorticity; and (d)
temperature.

Figure 15. Results of a spatially-developing reacting shear layer using an
incompressible flow model and temperature-independent kinetics. The dynamic
field is the same as that shown in figure 2a. The figure shows (a) the
product integral, f c dy, across the layer for a reacting perturbed shear
layer, similar that s~own figures 2 and 14, and across an unperturbed shear
layer where rollup is suppressed; (b) the product integral as a function of
the Damkohler number; (c) The product integral as a function of the Reynolds
number, the lines are computed for Re- 5000 and 10000 while the points 1, 2
, and 3 are computed at R M 500, 2500 and 50000, respectively, D is a
Damkohler number based on he local value of x; and (d) the total am~nt of
product in the field, f f cp dy dx as a function of the reactants ratio
across the layer.

Figure 16. Results of a three-dimensional simulation of doubly periodic
reacting shear layer between two reacting stream. The dynamics of this flow
is the same as that in figure 7 since the flow is incompressible. The
figure shows: (a) the product concentration (left) and reaction rate (right)
on an x-z spanwise plane located at the middle of the domain in figure 7.
(b) The product concentration (left) and reaction rate (right) across the
section described in figure 8. (c) The product concentration (left) and
reaction rate (right) across the section described in figure 9. Results are
shown in gray scale in which the maximum value is indicated by black and the
minimum value is shown in white. The gray scale for the product
concentration is fixed, 0 < c& < 1, while the gray scale for the reaction
rate is floating, Wmin  < W- < .

Figure 17. Product distribution within the initial stages in a reaction jet
using a compressible flow model with Arrhenius chemical kinetics. The model
is periodic in the streamwise direction. Results are shown at three time
steps for: (a) Af - 150; and (b) Af - 750.

Figure 18. The distribution of the reaction rate within one side of the
centerline of the reacting jet of figure 16, shown using a gray scale for
(a) A - 150 and (b) A - 750. Results are shown in gray scale in which the
maxim&m value is indicAted by black and the minimum value is shown in white.

Figure 19. The roll-up of a compressible, temporally growing veactinq sheir
layer between cold premixed reactants in the top stream and hot products in
the bottom stream. Results are shown in terms of: (a) the reaction rate
(shown in gray scale); and (b) the product concentration contours. rhe
temperature ratio across the layer is five.
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Figure 20. The total mass of products formed within the premixed reacting
shear layer shown in figure 19, compared with the same quantity for a
laminar flame propagating through the same mixture. Results are shown for
three different values of A;. Straight lines show the total mass of
products formed in the corresponding laminar flame.

Figure 21. The total mass of products and the length of the line of maximum
reaction rate in a premixed reacting shear layer similar to the one shown in
figure 19, and in the corresponding laminar flame. The temperature ratio
across the layer is three, Pe = 200 and Ta = 5.
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